Spin blockade and exchange in Coulomb-confined silicon double quantum dots.

نویسندگان

  • Bent Weber
  • Y H Matthias Tan
  • Suddhasatta Mahapatra
  • Thomas F Watson
  • Hoon Ryu
  • Rajib Rahman
  • Lloyd C L Hollenberg
  • Gerhard Klimeck
  • Michelle Y Simmons
چکیده

Electron spins confined to phosphorus donors in silicon are promising candidates as qubits because of their long coherence times, exceeding seconds in isotopically purified bulk silicon. With the recent demonstrations of initialization, readout and coherent manipulation of individual donor electron spins, the next challenge towards the realization of a Si:P donor-based quantum computer is the demonstration of exchange coupling in two tunnel-coupled phosphorus donors. Spin-to-charge conversion via Pauli spin blockade, an essential ingredient for reading out individual spin states, is challenging in donor-based systems due to the inherently large donor charging energies (∼45 meV), requiring large electric fields (>1 MV m(-1)) to transfer both electron spins onto the same donor. Here, in a carefully characterized double donor-dot device, we directly observe spin blockade of the first few electrons and measure the effective exchange interaction between electron spins in coupled Coulomb-confined systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exchange and the Coulomb blockade: Peak height statistics in quantum dots

We study the effect of the exchange interaction on the Coulomb blockade peak height statistics in chaotic quantum dots. Since exchange reduces the level repulsion in the many-body spectrum, it strongly affects the fluctuations of the peak conductance at finite temperature. We find that including exchange substantially improves the description of the experimental data. Moreover, it provides furt...

متن کامل

Effects of spin and exchange interaction on the Coulomb-blockade peak statistics in quantum dots.

We derive a closed expression for the linear conductance through a quantum dot in the Coulomb-blockade regime in the presence of a constant exchange interaction. With this expression we calculate the temperature dependence of the conductance peak-height and peak-spacing statistics in chaotic quantum dots. Using a realistic value of the exchange interaction, we find significantly better agreemen...

متن کامل

طراحی و مدل سازی مبدل های آنالوگ به دیجیتال سازگار با دمای اتاق به کمک نانوترانزیستورهای تک الکترونی با جزیره کوانتوم نقطه ای نیمه هادی

In this article, the design and modeling details of room-temperature analog-to-digital converter (ADC) based on silicon quantum-dot (QD) single-electron transistors (SETs) is presented. In contrast to the conventional metal quantum dots, the use of silicon QDs in the scales of few nano-meters enhances the device operation and makes stable the Coulomb blockade and Coulomb oscillation regimes at ...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature nanotechnology

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2014